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ON THE ORIENTATION OF CRYSTALS IN PORPHYRITIC ROCKS 

By 

F. Richard Yeatts 

Department of Physics, University of Arizona 

INTRODUC TION 

In certain igneous rocks, such as porphyries, relatively large inclu
sions are found imbedded in a fine-grained groundmass; and, such inclusions 
are often observed to be at least partially aligned. Furthermore, this aligning 
can sometimes be attributed solely to a process of deformation that the rock 
underwent while still somewhat mobile. The case where the deformation is 
thought to have occurred before the groundmas s  was completely solidified, but 
after the phenocrysts were well formed, has been considered by such workers 
as Riedel (1929), March (1932), and Oertel (1955) .  The research discussed in 
this paper forms an extension of their work. 

The paper is divided into three parts :  In the first, a mathematical 
theory is developed for predicting the type of alignment produced by uniform 
deformation. In the second part, examples of the mathematical theory are 
presented for the cases of flake-shaped, splinter-shaped, and ellipsoidal in
clusions. The third part deals with the application of the general theory to a 
particular geological formation-the Large Phenocrysts Porphyry described 
by Mayo (1961) .  

MATHEMATICAL THEORY 

In this section, as well as under the heading "Examples, " the mathe
matical background for describing the orientations of solid inclusions in de
forming plastic media is developed in some detail. This should be of interest 
to those concerned with the mechanics of such deformations. Readers not in
terested in the theory but wishing to know the results of its application was ad
vised to skip the next two sections and begin reading under the heading "Ap
plications. " 

When a rock, such as the Large Phenocryst Porphyry, is observed in 
the field, only its surface is available for study; the spatial orientations of its 
inclusions must be inferred from the planar orientations of their exposed sec
tions.  When the aligning is not so prominent that directional tendencies are 
obvious, the standard method for depicting such tendencies is through the use 
of rose diagrams. The rose diagram is Simply a polar plot of the number of 
inclusions versus direction of their planar orientation; usually, the orientations 
measured for all inclusions in a given circular region are included in the plot. 
If the orientations of the inclusions were completely random, the representative 
ros e  diagram would be circular. 
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The problem at hand is to determine theoretically the shape of a rose 
diagram in the case where the observed alignment was produced solely by a 
plastic deformation of the mobile groundmass.  It is assumed that the inclu
sions are rigid and were randomly oriented before deformation. It is further 
required that all inclusions be similarly shaped, although not necessarily the 
same size. Also, there must be sufficient spacing between inclusions so that 
the relative rotation of any one inclusion interferes but negligibly with the ro
tation of any other. Finally, it is stipulated that the deformation be "uniform" 
over the entire region of interest; that is, any two inclusions that were ori
ented relatively the same before deformation must be oriented relatively the 
same afterwards, regardless of their locations in the region. 

Formally it is necessary to consider just one inclusion, oriented at 
random initially, and imbedded in an infinite plastic medium. By prescribing 
the strain of the medium at infinity, and the nature of its plasticity, one can, 
in principle, determine the final orientation of the inclusion if its initial ori
entation is known. And further, one can then determine the probability of find
ing the inclusion in any particular final orientation on the basis of its initial 
random orientation. Let it be emphasized here that it is not the spatial ori
entation of the inclusion that is of ultimate interest but the planar orientation 
of a cross section of the inclusion. In practice the sectioning plane would be 
the surface of the rock. 

Let the orientation of the inclusion be specified by the angles :  e , ¢; ,  
Vr ,  measured with respect to a Cartesian coordinate system whose xy-plane is 
the sectioning plane, and whose origin is on the "principal axis" of the inclu
sion. The "principal axis" is simply a characteristic line through the inclu
sion, such as a largest dimension or a symmetry axis. In figure 1 an ellips 
oidal inclusion is illustrated: The longest axis is defined as the principal axis;  
" e "  measures the angle between the principal axis and the z-axi s ;  " ¢ ,, meas
ures the angle between the projection of the principal axis on the xy-plane and 
the x-axis ; and " yr " measures the angle by which a second characteristic 
axis, for example the shortest axis of the ellipsoid, is rotated about the prin
cipal axis from the xy-plane. 

For the initial condition of randomness ,  one can write: 

(1) 

The probability "d3p" of finding the prinCipal axis of the inclusion between "e, 
e + d e "  and " cj:J, cj:J + d ¢ " and its second characteristic axis between 
" V' ,  yr + d yr " depends only on the size of the solid angle "sin e d e d cp " and 
the size of the increment of rotation "d y.r . "  The factor " 1 " is the normal-
ization constant. 81TZ 

C onsider now some strain in the medium surrounding the incluSion, 
causing it to be rotated to the new position: " e  I ,  ¢ I ,  V' I . " Let the inclusion 
be sectioned now by the xy-plane ; define " 4> " to be the planar orientation of 
the cross s ection measured from the x-axis to a characteristic line in the cross 
s ection. For the ellipsoid pictured in figure 1 ,  the characteristic line would be 
the major axis of the ellipse cut out by the xy-plane. The angle " <p " can be 
written as a function of the final angles " e  " cp I ,  l/I I ,  " but these in turn can 
be written as functions of the initial angles " e ,  cP ,  \If " and the parameters 
descriptive of the strain ; thus:  
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q> = q> ( e ,  cP, yr ; strain parameter s )  (2) 

The above relation can be looked upon as a change in variables. Then, if it is 
possible to invert the expression and solve explicitly for one of the initial an
gles, say " cP ,  " the probability "d3p" can be written: 

C/J = cP ( e ,  q> , yr ; strain parameters) 

If now an integration is performed over the two initial angles, one has :  

dP = P ( q> ) d <p 
P ( CP )  =l 1T

sinere¢�d VI d e 
o 7, \ <ll 

(3 )  

(4) 

(5) 

The function " P ( <Xl )"  depends on " <p ,  " of course, and the strain parameters. 
"dP" is the probability of finding the inclusion with its final planar orientation 
between " <p , <p +d<P I f ;  when plotted on polar paper " P ( <P )"  is just the de
sired rose diagram. 

EXAMPLES 

When a homogeneous plastic medium is strained uniformly, the defor
mation is described by the affine transformation: 

Xl • (1 + eU)x + e12Y + e13 Z 

yl 
= e2 1x + (1 + e22)y + e23 Z 

� = e3 1  x + e32Y + (1 + e33) Z 

(6) 

"Xl , yl , Z I " give the position of a point in the medium whose coordinates be
fore deformation were "x, y, Z. "  The numbers "el l , e1 2, " " e33 " are called 
the components of the strain and are constants when the deformation is uniform. 
It is easily shown that under an affine transformation, straight lines are trans
formed into straight lines and planes are transformed into planes. 

C onsider the presence of rigid flake-shaped (or splinter-shaped) in
clusions in the medium. It would seem reasonable to expect that if the same 
stress which originally produced the uniform deformation were now applied to 
the medium, that the deformation would still be uniform except in the immedi
ate vicinity of an inclusion, and that the inclusion would be rotated in much the 
same way as was the plastic medium it displaced. These expectations have 
been verified experimentally by the author in the two dimensional case. Seg
ments of fine wire were imbedded in the surface of a clay cake at preassigned 
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orientations. Upon deforming the cake uniformly, it was found that the wires 
were rotated the same amount as a set of similarly oriented straight lines 
merely ruled on the surface. It will thus be assumed that in three dimensions 
also, rigid flake-shaped (or splinter-shaped) particles will rotate under uni
form deformation precisely as the mathematical planes (or lines) they lie 
along. 

Turning first to the case of flake-shaped particles, let the spherical 
angles " e ,  cp " locate the normal to the plane which one such particle lies 
along before deformation. The equation of this plane is given by: 

x sin e cos cP+ y sin e sin ¢+ Z cos e = 0 (7) 

From figure 2 it is apparent that " e " is just the dip of the plane with respect 
to the xy-plane, and " cP + 1" is its strike. After deformation the plane has the 
formula: 

x' sin 51' cos cP' + y' sin e' sin cP' + Z' cos e ' = 0 (8 ) 

When sectioned along the xy-plane, a flake- shaped particle will leave as its 
trace a "line segment" in the direction of strike; call this direction " <p I f :  

<p= rp '  + f (9) 

To express " cj; 'If  in terms of " e ,  cp " and the strain parameters, introduce 
the inverse transformation of "6": 

x = (1 + a1 1)x' + a12 y' + a13 Z' 

y = a2 1  x' + (1 + a22)y' + a23 Z' 

Z = a31  x' + a32 y' + (1 + a33)Z' 

(10) 

The inverse transformation exists as long as the determinant of the coefficients 
of equation "6" does not vanish: 

det 
(1 + ell)  e12 e13 

e2 1  (1 + e22) e23 

e3 1  e32 (1 + e33) 

';' 0  (11)  

This determinant, however, is  a measure of volume dialation, and its vanish
ing would imply that volume has been annihilated by the deformation . . .  a phys
ical impossibility. For incompressible materials the determinant equals 
unity. 
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Substituting from "10" into "7" and rearranging gives: 

�1 + all)sin G'cos cP+ a21 sin esin cP+ a31 cos �XI 

+ [a12 sin Bcos cP+ (1 + a22)sin 19 sin 4J+ a32 cos e] y' (12) 

+ [a13 sin6'costP+a23 sin6'sincP+ (1 +a33)cos8]Z'=0 

Comparing equation "12" with "8" it is possible to write: 

A-. a12 sin8cos cP+ (1 + a22)sin8sinq,+ a32 cos e 
tan 4"1 - _________________ _ 

- (1 + all)sin8cos C/J+ a21 sin 8sin cP+ a31 cos e 
(13) 

And the orientation of the section " 1> " is given by: 

<P= tan-l [a12 sin8cos<p+ (1 +a22)sin8sinC/J+a32 COSB]+:!L 
(14) 

(1 + all)sin8cos C/J+ a21 sinesin 4>+ a31 cos B 2 

According to the general theory, one must now solve equation "14" for one of 
the original angles, in this case "¢ , " and form " cS e ": 

04> 

And also, it is necessary to have: 

Then we form the integral: 

(18) 

which evaluates to: 



23 

p ( <1» = r=-11
1 1 

'i "1I A sin2 ¢+ 2B sin ¢ cos¢ +  C cos2 ¢ 

.M 1 sin¢ + A 1 cos q>  
x� cqsin2 <p +2 t) 1sin<pcos<p +r1cos2<p 

where: 

2 2 
d. 1 = a12 + a32 

0<. 2  = (1+a22)2+a;2 

A 2 sin<p + A 2 cos <p 
+ Jo(2sin2<p +2 t> 2sin<P cos¢+r2cos2 <p } 

(19) 

r 1 = (1+al 1 )2 +a� 1 
2 2 r2=a2 1+a3 1  

Equation "19" is the desired formula for predicting the rose diagram 
appropriate to flake-shaped particles. To interpret this result, however, it 
is well to consider particular examples. In figures 3 , 4, and 5, polar plots of 
" ;0 ( <p ) " are presented for three simple but representative types of strain: 
simple extension in the x-direction, shear in the xy-plane, and shear in the xz
plane. The effects of different magnitudes of strain are illustrated in the case 
of simple extension. 

A few remarks can be made about the functional behavior of equation 
"19. " First of all, the symmetry requirement: 

(20) 

can be met by merely choosing the appropriate signs for the square roots. 
Secondly, the possibility that one of the denominators might vanish is not a 
serious difficulty. For the first denominator on the right to equal zero, the 
three coefficients "E1, E2, E3" must all equal zero ; but this implies that vol
ume was annihilated by the deformation. The vanishing of the other two de
nominators can occur only if "E1 " in the one case or "E2" in the other were to 
vanish; and in addition, the vanishing only occurs at a particular angle. But at 
this angle the numerators will, in each case, also vanish; the resulting inde
terminancy is but a removable Singularity. 
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e 0 . 0  
0 . 1  

l+eu =l+e, l+e��=l+eJJ= 1 , ei j
= 0 for i;ij 

l+e 

<t> .£ 1+� � )* p ( ) - 2'1T"[1+( e+3e' +ej )sin' ill) 

Figure 3 . - -Polar plot of strain. 

p ( <t» � 1 
1-2e sinillcosi1l+e' sin ill 

Figure 4. - -Polar plot of strain. 



25 

Turning briefly now to the case of splinter-shaped inclusions : the 
orientation of such particles is given simply by the coordinates " e ,  cP "  of 
the lines they lie along, as depicted in figure 6. After deformation then, the 
particle would lie along the line given by " & " 4J ' . "  Assuming that the par
ticle has some thickness, its trace on the xy-plane would be a "streak" in the 
" cP ' "  direction. It is convenient to call " cP I I ,  the orientation of the streak; 
thus, one has :  

(21 )  

Toward obtaining the transformation equations needed, let "x, y ,  Z"  
be a point on  the line " e ,  q; , "  then: 

x = r sin 6cos cP 

y = r sin 6 sin cp 

Z = r cos & 

By the deformation the point shifts to "x' , y' ,  Z' " on " e " cp '  ": 

x' = r' sin e '  cos cP , 

y' = r' sin e '  sin cP , 

Z' = r' cos 19 '  

From equations "22, 23, 6" one can write: 

And from equation "2 1" :  

¢ = tan- 1  [ e2 1  sin G'cos CP+  (1+e22)sin 6sin cP+  e23 cos e l 
(l+el l)sinecos CP+ e12 sinesin cp+ e13 cos e J 

(22) • 

(23 ) 

(24) 

(25) 

Comparing equations "25" and "14" it is apparent that the two would be the 
same if the "e· · "  are replaced by the "ai ' "  and " ¢ "  by " ¢  -'IT. " Consequent
ly, the probability distribution function ' �p ( ¢ )" will be quit! similar to that 
for flake-shaped particles. Indeed, for the strains considered in the figures 
(figs. 3 and 4), "P ( <p )" has exactly the same form for both splinters and 
flakes. For the strain considered in figure 5, the probability distribution func
tion would have a circular plot, indicating no alignment in the xy-plane. The 
curve presented in figure 5 would apply to splinter-shaped particles under the 
strain : e13  = e, eij = 0, i, j , 1 , 3 . 
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The case of ellipsoidal inclusions was also considered, but less def
inite results were obtained due to the mathematical complexities involved. 
Besides the purely mathematical difficulty encountered in performing the in
tegration required, the relationship between applied strain and change of ori
entation of the ellipsoid in the plastic medium is not at all obvious. One must 
assume some mechanism by which the "overall" strain of the medium effects 
the rotation of the inclusion. Two such mechanisms were considered by the 
author, both being valid only for small strains. The first treats the inclu-
sions as being composed of a substance whose plastic properties are similar 
to those of the embedding medium. Calculation then follows the same scheme 
outlined for flake-shaped particles, with the formula for an ellipsoid replacing 
that for a plane . The planar orientation " <p " would here be conveniently 
taken as the direction of the major axis of the ellipse cut out by the intersec
tion of the ellipsoid, after deformation, with the xy-plane. The second method 
assumes that the embedding medium deforms as an elastic solid, the inclusion 
being rigid and in intimate contact with the medium. From the geological stand
point, this approximation would be particularly appropriate to the case where 
a very viscous magma is deformed in a relatively short period of time. In 
this second case, then, one must first solve the problem of a rigid ellipsoidal 
core welded into an infinite elastic medium, when the strain is given to be uni
form at a great distance from the ellipsoid. 

On the basis of some very specialized calculations carried out by the 
author along both lines discussed above, as well as from the results obtained 
previously for the cases of splinters and flakes, certain characteristics of the 
rose diagrams for ellipsoidal particles can be anticipated. It is expected that 
ellipsoidal inclusions with one axis much shorter than the other two would 
yield rose plots similar to that for flake-shaped particles but less eccentric 
for a given strain ; the "thickness" tends to inhibit the rotation. And inclusions 
with one axis much greater than the other two would give a plot similar to that 
of splinters but again less eccentric. For ellipsoidal inclusions with less ex
treme dimenSions, calculations have been carried only far enough to say that 
their rose plots will be quasielliptical and, of course, somewhat of a compro
mise between those of flake- and splinter-shaped inclusions. 

A PPLICA TION 

A comprehensive account of the structure of the Large Phenocryst 
Porphyry is given by Mayo (1961), including the results of a study on the dis
tribution of  crystal orientations. In what follOWS, two aspects of this distri
bution are examined: the significance of the individual rose diagram with re
gard to the number of crystals included in the measurements ; and the variation 
between rose diagrams as taken at different places on the porphyry. 

For ease in measuring crystal orientations, closeup photographs were 
taken of the various flat exposed surfaces of the porphyry to be studied. The 
surfaces chosen were either horizontal or vertical ; the exposure of the vertical 
surfaces was either parallel or perpendicular to the axis of the formation. 
When a rose diagram was to be prepared, a centrally located crystal was se
lected on the photograph, and the orientation of its longest dimension was 
measured. The orientation of the longest dimension was then measured for 
every crystal in a circular region about the central one. Each measurement 
was then catalogued according to which of the 18 possible 100 intervals it was 
oriented. The number of entries in each interval was plotted on polar paper 
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as a function of the midpoint angle of the interval. A smooth curve was then 
fitted to the points and closed by making use of the inversion symmetry prop
erty. Figure 7 shows schematically the arrangement of phenocrysts on a typ
ical surface ;  a vertical longitudinal face was used to prepare this diagram, 
but similar features would be observed on any surface. No effort was made to 
preserve the exact size or shape of the individual phenocrysts, but the rela
tive spacing is reproduced on a 1 : 1 scale. One of four symbols is assigned to 
each phenocryst according to which of the four apparent structural directions 
it tends to be oriented. The orientation of the largest dimension of each pheno
cryst in the figure corresponds, of course, to the orientation of the largest 
dimension of each actual phenocryst. The four structural directions are as
sociated with the four maxima of the rose diagram for this surface, as drawn 
in the heavy smooth curve of figure 8. This curve is a smoothed out interpre
tation of the polygon shown in the same figure ;  the polygon was obtained by 
simply connecting the data points by straight lines. The distance of each data 
point from the center of the diagram is, of course, proportional to the number 
of phenocrysts in the 100 interval in which the data point was plotted at the 
midpoint angle. 

Two observations can be made regarding the distribution and orienta
tion of phenocrysts in any given region: First, on measuring the orientations 
of all phenocrysts in successively larger and larger areas, the prominence of 
the maxima of the rose diagram is found to decrease but not to disappear. 
Second, as evidenced in figure 7, similarly oriented crystals are occasionally 
found concentrated in small irregular clusters. When this was first noticed 
the author was tempted to identify these groupings with shear planes truncated 
by other shear planes. But upon closer examination of the exposed areas on 
the porphyry, it appears impossible to discern any such structure ; the clusters 
are distributed at random and cannot be associated with planes through the for
mation. 

It has also been found that as one moves from place to place about the 
formation there is little change in the directional tendencies of the rose dia
gram maxima, although there can be considerable variation in the relative 
amplitudes. This variation depends partly on the exact area selected for meas
urement, because of statistical fluctuations, but mostly on the general region 
of the formation in which the measurements are being made. Figure 9 shows 
a map of the Large Phenocryst Porphyry; the rose diagrams are representa
tive of the areas they overlie. It can be seen that there is a strong tendency 
for the phenocrysts to be aligned parallel to the contact of the formation. Also, 
the Similarity between rose diagrams representative of the interior of the por
phyry and those representative of the contacts seems to indicate that the 
mechanism responsible for the aligning was felt throughout the formation and 
not merely near the contacts. The information used in preparing this diagram 
was graciously supplied by Dr. Mayo and reproduces part of that presented in 
figure 31 of his paper (1961) .  

Figure 1 0  shows rose diagrams constructed on three mutually per
pendicular surfaces ; the rock surfaces represented were within a few feet of 
each other in the formation, their approximate location being indicated on the 
map in figure 9. In transposing from the little pulled-out block of figure 9 to 
the large cube of figure 10, the little block is imagined to be rotated so that 
the original east-northeast vertical face is toward the observer. The top sur
face of the large cube appears as though rotated clockwise through 900 ; other
wise it is identical with the top of the little block of figure 9. Due to a lack of 
suitably exposed vertical faces, little can be said about crystal alignment in 
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this dimension, but the information presented in figure 10 is representative of 
that obtained for the east-northeast contact. 

Comparing the rose diagrams representative of the Large Phenocryst 
Porphyry with the theoretical curves derived earlier in this paper, it is ob
vious that the orientations of the crystals are not indicative of a pure affine 
deformation. Therefore, either an entirely different orienting mechanism 
must be sought as the sole explanation, or there must be a new mechanism 
acting together with affine deformation. Consider the latter alternative. 1f 
one looks only at the greatest maxima of the rose diagrams in figure 9, it 
could be inferred that the emplacement was effected by an upswelling of a very 
viscous magma in which the phenocrysts were suspended, accompanied by a 
squeezing out along the formation axis. This sort of deformation would be 
locally affine, and it is similar to the mechanism visualized by Mayo (1961 ) .  
To explain the submaxima, then, two facts must be kept in mind. First, the 
directional tendencies of the maxima are similar over all the formation, sug
gesting that the structural mechanisms they reflect were effective during or 
after the emplacement. Second, similarly oriented crystals are occasionally 
found in small irregular clusters, casting doubt on the orienting influence of 
regular shear planes. Perhaps it can be imagined that after emplacement, but 
before final cooling, the formation was subjected to stresses that caused "in
cipient cracks" to develop in both the shear and tension positions-cracks 
which never evolved into extensive shear or joint planes. There would have 
been a tendency, then, for crystals to grow along such microcracks, and their 
intersections, producing the clustering observed. This suggested production 
of incipient cracks is reminiscent of the phenomena observed in brittle frac 
ture where systems of tiny cracks permeate the stressed body in predictable 
directions before actual rupture occurs. 
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POSTSCRIPT 

By 

Evans B. Mayo 

Department of Geology, University of Arizona 

After reaching certain conclusions concerning the mode of emplace
ment of the Large Phenocryst Porphyry near the Arizona-Sonora Desert Mu
seum, and on the possible mechanism by which its phenocrysts were oriented, 
it seemed advisable to have this problem studied by another investigator, using 
a different approach. Fortunately, Mr. Yeatts of the Department of Physics 
wished to apply his background of mathematics and physics to a geological 
problem. The result was the foregoing paper. 

The problem is a very difficult one, and Mr. Yeatts deserves much 
credit for completing it. The tentative conclusion, that highly viscous molten 
masses pass  through a stage of affine plastic deformation and enter a stage in 
which part of their phenocrysts become oriented to (grow along? ) incipient 
shear or tension cracks, is important in studies of structures in granitic 
rocks. In such rocks crossed foliations are rather commonly found, suggest
ing crystal orientation along two or more well-developed sets of shear planes. 
Mr. Yeatt' s results suggest that the phenomenon of crossed foliations could 
develop in congealing melts. In connection with other evidence, crossed folia
tions have also been used as a criterion of the metasomatic origin of certain 
granites .  

The question o f  metasomatism vs. melts o f  extremely high viscos ity 
should be of interest in connection with studies of related mineral deposits. 




